If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5u^2=60
We move all terms to the left:
5u^2-(60)=0
a = 5; b = 0; c = -60;
Δ = b2-4ac
Δ = 02-4·5·(-60)
Δ = 1200
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$u_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$u_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1200}=\sqrt{400*3}=\sqrt{400}*\sqrt{3}=20\sqrt{3}$$u_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-20\sqrt{3}}{2*5}=\frac{0-20\sqrt{3}}{10} =-\frac{20\sqrt{3}}{10} =-2\sqrt{3} $$u_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+20\sqrt{3}}{2*5}=\frac{0+20\sqrt{3}}{10} =\frac{20\sqrt{3}}{10} =2\sqrt{3} $
| 5/3+x/2=25/6 | | 3x^2-23x*30=0 | | (25^((2x+1)/2))^1/(2-x)=1/5 | | 0=5(x+1)-x-3(x-1)-7 | | 7+8a=2a+1 | | 0=-3(y+1)+7y-4(y+1)+5 | | -5.2x=20.8 | | -3+7r=5r-15 | | 77-(3x+16)=3(x+4)+x | | 28d^2-7d=0 | | 3x+x-180=0 | | Y=30+0.15x | | 2u+42=-6(u-3) | | X=1/9y-6 | | 5-((x+8)/4)+((x-5)/3)=0 | | 2(x-2)-4=2(x-9) | | 5=(x+8)/4+(x-5)/3 | | 7/5x+2=16 | | 5=((x+8)/4)+((x-5)/3) | | 7/2x+1/2x=4x+20/2+5/2x | | 9x^2=18x+40 | | x^2-x-20=0 | | -23v+4=8 | | 8t-26=23+t | | 4x+3+6x+8+2x+13=180 | | x/12=7.5/8 | | w+38/3=2/3 | | 2x^2+9x=x-14 | | 4m+6-2m=2m+ | | 2x+13=3x+20+7x+17 | | 4(1.04)^t=t+8 | | 12+-x=5 |